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Current bacterial DNA-typing methods are typically based on gel-based fingerprinting methods. As such,
they access a limited complement of genetic information and many independent restriction enzymes or probes
are required to achieve statistical rigor and confidence in the resulting pattern of DNA fragments. Further-
more, statistical comparison of gel-based fingerprints is complex and nonstandardized. To overcome these
limitations of gel-based microbial DNA fingerprinting, we developed a prototype, 47-probe microarray con-
sisting of randomly selected nonamer oligonucleotides. Custom image analysis algorithms and statistical tools
were developed to automatically extract fingerprint profiles from microarray images. The prototype array and
new image analysis algorithms were used to analyze 14 closely related Xanthomonas pathovars. Of the 47 probes
on the prototype array, 10 had diagnostic value (based on a chi-squared test) and were used to construct
statistically robust microarray fingerprints. Analysis of the microarray fingerprints showed clear differences
between the 14 test organisms, including the separation of X. oryzae strains 43836 and 49072, which could not
be resolved by traditional gel electrophoresis of REP-PCR amplification products. The proof-of-application
study described here represents an important first step to high-resolution bacterial DNA fingerprinting with
microarrays. The universal nature of the nonamer fingerprinting microarray and data analysis methods
developed here also forms a basis for method standardization and application to the forensic identification of
other closely related bacteria.

The need to rapidly detect specific microorganisms is both
varied and extensive, encompassing basic biochemical, genetic,
and ecological research and numerous applications in the ge-
netic identification and tracking of pathogenic microorgan-
isms. Current epidemiological investigations of pathogenic
microorganisms use fairly standard techniques for DNA fin-
gerprinting or discriminating between closely related isolates.
These include pulsed-field gel electrophoresis (2), variations
on Southern hybridization (43), and PCR-based techniques
such as randomly amplified polymorphic DNA PCR (39), re-
petitive element PCR (18, 24), analysis of restriction fragment
length polymorphisms (20, 30), single-stranded conformation
polymorphisms (26), denaturing gradient gel electrophoresis
(29), and combinations thereof (40). In most cases, current
DNA-typing methods access a limited complement of genetic
information and the fingerprint is based on DNA fragment
sizing technology (i.e., gels) that requires parallel processing
with many independent restriction enzymes or probes to
achieve statistical rigor and confidence in the resulting pattern
of DNA fragments.

Despite the widespread acceptance of gel-based DNA fin-
gerprinting techniques, they frequently fail to answer funda-
mental epidemiological questions. For example, Hancock et al.
identified multiple sources of Escherichia coli O157:H7 in feed-
lots and dairy farms but were unable to discriminate between

isolates by pulsed-field gel electrophoresis (16). Even the most
advanced fluorescent amplified fragment length polymorphism
techniques cannot unequivocally discriminate between near
neighbors of Bacillus (39). In the absence of adequate resolv-
ing power, then, it is not possible to identify the source of
disease outbreaks, determine how pathogens disseminate in
the environment, or determine how they enter into and dis-
tribute between different vectors or hosts. Therefore, there is a
continuing need to develop high-resolution DNA fingerprint-
ing methods to discriminate between closely related microor-
ganisms.

Nucleic acid microarrays are a relatively recent technology
development that can overcome many of the limitations of
gel-based, DNA fragment-sizing fingerprint methods. Microar-
rays typically contain hundreds to thousands of individual nu-
cleic acid probes addressed at specific locations on a two- or
three-dimensional support (4, 5, 8, 10, 31, 38, 44). Rather than
relying solely on post-PCR size discrimination of the resulting
DNA fragments (as with most gel-based fingerprinting sys-
tems), the microarray accesses information and interrogates
the genome directly at the DNA sequence level. Thus, DNA
microarrays (in general) offer tremendous potential for micro-
bial detection, identification, and characterization in both basic
and applied environmental science. Beattie (3) and coworkers
were the first to use oligonucleotide microarrays for genomic
fingerprinting, in a technique very similar to the nucleic acid
scanning-by-hybridization membranes of Salazar and Caetano-
Anollés (34). However, microarrays have not yet been devel-
oped for fingerprinting closely related microorganisms, nor
have the quantitative analysis and statistical tools been devel-
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oped to use microarrays for forensic analysis of microorgan-
isms. In this study, we developed a random DNA fingerprinting
microarray, automated image analysis tool, and requisite sta-
tistical algorithms for identifying and comparing microarray
fingerprints, for the purpose of tracking pathogenic microor-
ganisms in environmental systems and nonhuman vectors. The
prototype array was applied to discriminate between patho-
genic Xanthomonas species and subspecies that cannot be eas-
ily identified by gel-based fingerprinting methods.

MATERIALS AND METHODS

Bacterial isolates. The bacterial isolates used in this study, their source, host
plant, and associated disease are listed in Table 1. Xanthomonas and Pseudomo-
nas isolates were cultured in TY-MOPS-buffered broth (11) and checked for
purity and uniformity on TY-MOPS agar plates incubated at 30°C. Handling and
long-term storage of the cultures were as described previously (12). Cultures of
E. coli were grown at 37°C in Luria broth or Luria agar plates and were main-
tained and stored by standard methods (35).

Nucleic acid extraction. High-molecular-weight chromosomal DNA was iso-
lated from 5 ml of overnight culture using Genomic-Tip 100/G kits as specified
by the manufacturer (Qiagen Inc., Valencia, Calif.). Plasmids from E. coli or
Xanthomonas and chromosomal DNA from other (reference) bacteria were
isolated by standard methods (35).

PCR amplification. For this study, we used repetitive extragenic palindromic
(REP) consensus PCR primers (42) to sample microbial genomes and generate
amplified genomic DNA fragments for subsequent analysis on the random oli-
gonucleotide microarray. A minimum of two replicate PCR amplifications were
performed for every isolate and test condition. Biotinylated PCR primers
(REP1R-Dt, 5�-biotin-IIINCGNCGNCATCNGGC, and REP2-D, 5�-biotin-
RCGYCTTATCVGGCCTAC, where I � inosine, Y � C or T, R � A or G, and
V � G, A, or C) were obtained from Biosource International (Camarillo, Calif.).
PCR reagents were from a HotStar Taq kit (Qiagen), except for the deoxynucleo-
side triphosphates (dNTPs) (Amersham Pharmacia Biotechnology, Piscataway,
N.J.). PCR amplification was performed in a 50-�l total volume, using a Tetrad
thermal cycler and 96-well plates (MJ Research, Watertown, Mass.). Final re-

action conditions were (a minimum of) 150 ng of genomic DNA and 1� PCR
buffer (Qiagen), 2.5 mM Mg2�, 200 �M each dNTP, 1 U of Taq polymerase, and
0.6 �M each REP primer. Reagent grade water was used as a negative control.
Thermal cycling conditions were 1 cycle of 95°C for 15 min followed by 40 cycles
of 95°C for 30 s, 40°C for 45 s, and 72°C for 3 min, and cooling to 4°C. PCR
amplification was confirmed by analyzing 20-�l aliquots of the amplification
reaction mixture on a 2% agarose gel in 1� Tris-acetate-EDTA (TAE) running
buffer. The remaining, labeled amplification products were hybridized directly to
microarrays without further manipulation, as described below. For gel-based
fingerprinting, primer-labeled Xanthomonas REP-PCR amplification products
were separated at 1 to 2 V cm�1 on 1.5% gels composed of a 50:50 mixture of
SeaKem GTG:Metaphor agarose (FMC Bioproducts, Rockland, Maine) in 1�
TAE running buffer, both containing 3 �g of ethidium bromide per ml.

Microarray probes. A list of 2,000 nonamer microarray capture probes was
generated by random computer selection based on the sequence of the E. coli
K-12 genome (GenBank accession number U00096). Because the capture probes
are only 9 nucleotides in length, any one probe is expected to occur (on average)
once every 131,000 bases in any double-stranded genome (once every 49 bp �
262,000 bp; 131,000 bases in a double-stranded sequence). The computer pro-
gram was written to perform the following screens: any repeated sequence was
less than 4 nucleotides; there were no terminal, 3-nucleotide inverted repeats
(hairpins); any probe containing a GGGCCC repeat was discarded; the G�C
content was maintained between 44 and 55%; and any probe containing a
palindrome was eliminated. From this analysis, we selected 47 nonamer probes
(Table 2) that occur (on average) 35 times each within the E. coli genome, with
nearly equal probability of hybridizing to each strand of the genome. In addition
to the 47 nonamer capture probes, the prototype array contained a biotinylated
quality control (QC) probe (5�-biotin-TTGTGGTGGTGGTGTGGTGGTGGG
GTTGGG TGGTGG-3�) that served as a positional reference point and positive
control for the array detection chemistry.

Microarray fabrication. Amine modified oligonucleotides were printed on
12-well Teflon-masked slides (Erie Scientific, Portsmouth, N.H.) as previously
described (7). Briefly, the slides were prepared for printing by being washed in
2% Microcleaner and rinsed with distilled water. The slides were submerged in
a 3 N HCl bath for a minimum of 30 min and then given a 30-min wash in 3N
H2SO4. They were thoroughly rinsed with distilled water and dried with com-
pressed N2. They were then coated with 2% (vol/vol) epoxysilane (3-glyci-
doxypropyltrimethoxysilane [Aldrich, Milwaukee, Wis.]) in methanol for a min-
imum of 30 min, rinsed with 100% methanol, and immediately dried with
compressed N2.

Oligonucleotide capture probes were resuspended in reagent grade water, and
the concentration of each was measured in triplicate by spectrophotometry
(Smartspec 3000; Bio-Rad, Hercules, Calif.). Subsequently, capture probes were
diluted to 80 to 100 �M in 0.01% sodium dodecyl sulfate, 50 mM NaOH print
buffer. Probes were printed with a 417 Pin and Ring arrayer (Affymetrix, Santa
Clara, Calif.), with a complete 47 probe microarray contained within each well of
the Teflon-masked slide (47 probes � 1 QC). After printing, the slides were
baked for 30 min at 130°C and stored at room temperature.

Hybridization procedures. Biotinylated REP-PCR products (20 �l) were di-
luted to 70 �l in hybridization buffer to achieve final concentrations of 4� SSC
(1� SSC is 0.15 M NaCl plus 0.015 M trisodium citrate [pH 7.0]) and 5�
Denhardt’s solution (1 g of Ficoll 400 per liter, 1 g of polyvinylpyrrolidone per
liter, 1 g of ultrapure bovine serum albumin per liter). Amplification products
were heat denatured for 5 min at 95°C, snap cooled on ice, and divided evenly
between two replicate arrays. Thus, the microarray fingerprint for each isolate
was generated from four replicate hybridization reactions (two PCR amplifica-
tions � two microarrays per amplification). Denatured amplicons (in hybridiza-
tion buffer) were hybridized overnight at 4°C and washed five times in an ice-cold
solution of 4� SSC. Before the detection reagents were applied, the slides were
incubated for 30 min in 35 �l of ice-cold reaction buffer (4� SSC, 5� Denhardt’s
solution). The reaction buffer was aspirated from each well and replaced with 35
�l of streptavidin alkaline phosphatase (SAAP) (Amersham) diluted 1:500 in
reaction buffer. The slides were incubated for 1 h at 4°C, the SAAP was carefully
aspirated from each well, and the slides were washed by immersion five times in
1� ELF-97 wash A (Molecular Probes, Eugene, Oreg.). Excess wash solution
was aspirated from each slide, and a drop of ELF-97 wash A (20 to 35 �l) was
applied to each well. Liquid from each well was carefully aspirated, and then 20
�l of ELF-97 substrate (diluted 1:100 in component C [developing buffer; Mo-
lecular Probes]) was applied to each well. Each slide was then incubated in the
dark for 1 h at 4°C and washed five times in ELF final wash and three times each
in a series of three distilled water tubes. The slides were air dried and imaged
with a Fluor-S MultiImager (Bio-Rad) equipped with a 28- to 200-mm DL
Hyperzoom macro lens (Sigma, Rödermark, Germany) that was fitted with a �1

TABLE 1. Bacterial isolates used in this study

Isolate Source or origina Disease or host Reference(s)

X. axonopodis
pv. axonopodis ATCC 19132T Axonopus

scoparius
pv. malvacearum N Cotton 12
pv. citri 3213 Florida Citrus canker 12
pv. citri 62 Japan Citrus canker 41c

pv. citri 100 Pakistan Citrus canker 41
pv. citri 166 India Citrus canker 41
pv. citri 169 India Citrus canker 41
pv. citrumelo Florida Citrus bacterial

spot
12, 41

X. campestris
pv. campestris ATCC 33913T Cabbage 12
pv. campestris X3 Cabbage 22
pv. alfalfae KX-1 Alfalfa 12

X. oryzae
pv. oryzae ATCC 43836b Rice
pv. oryzae ATCC 43837b Rice
pv. oryzicola ATCC 49072b Rice

E. coli strain B Sigma

P. putida ATCC 39169

a T, type strain.
b No longer sold by the American Type Culture Collection.
c Isolates referred to in reference 41 were obtained from John Hartung, U.S.

Department of Agriculture, Beltsville, Md.
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close-up lens. Once dry, the ELF-97 crystals appeared to be stable and suitable
for long-term storage and reimaging.

Image analysis and statistics. Slide images were exported as 16-bit uncom-
pressed TIFF files for data analysis and contained 12 � 48 spot arrays in a 6 �
8 offset grid pattern (see Fig. 1). A sample signature of estimated spot intensities
for each array on each slide was extracted using Matlab (The Math Works, Inc.,
Natick, Mass.) and our toolbox of custom array-image analysis algorithms. The
set of 64 sample signatures, four replicates each of 16 isolates, were then com-
pared using multivariate statistical analysis techniques (37).

In this study, we used custom statistical models and algorithms, including a
semiautomatic grid alignment procedure, to estimate isolate-specific signatures,
one from each array on every slide. The statistical models and algorithms ac-
commodate the uncontrollable variations in microarray geometry, probe spot
location, and size due to the printing process and the variations in fluorescence
intensity from nonspecific hybridization, local and global background noise, and
stray light (36). First, the expected print layout is warped to the actual layout
observed in a printed grid, resulting in an array template. Corresponding spots in

the expected and printed grids are identified using a relatively small number of
mouse clicks. Then, the general row and column spacing of a printed grid is
estimated using a linear model and least-squares estimation (21). The warped
grid is then fit automatically to each array in each slide image (64 arrays across
six slides in this study) by using a second linear model that accounts for variation
in displacement and orientation across arrays. Thus, the semiautomated grid
algorithm and model allows for differences in spot location, orientation, and
scale from array to array, within a slide and between slides, rather than extracting
probe spot intensity (and background intensity) data from a fixed grid and spot
size.

Once the expected locations of probe spots are identified within each array and
slide image, we used the APEX (automated peak extraction) algorithm (19) to
estimate the above-background pixels at each expected spot location and then
the degree of reactivity (i.e. spot intensity). A key feature of the APEX algorithm
is the automated identification of each spot’s “above-background” pixels by using
a stochastic model and a statistical hypothesis-testing framework that allows for
variation in spot location, shape, and intensity on the array. Under the APEX
model, all pixels in the neighborhood (including those of the expected spot) are
hypothesized to be background pixels of nominally uniform intensity. The APEX
test statistic tests the hypothesis of neighborhood pixel uniform intensity. A spot
is called “on” if pixels in the expected spot location are more intense than
adjacent pixels, so that the hypothesis of a uniform neighborhood is rejected;
otherwise, the spot is deemed “off.” The estimated “on” spot intensity within the
expected spot location is an indicator of the level of hybridization and can be
deduced even in a highly variable local or regional background (see Results). The
set of APEX-estimated spot intensities and “on/off” results is ordered by probe
ID for each array and constitutes an estimated array signature.

For comparison, spot intensities were also estimated with Phoretix array soft-
ware (version 1.00; Phoretix International, Newcastle, United Kingdom), a pack-
age that was initiated based on densitometry analysis of traditional dot blot data.
In version 1.00, the user first defines a microarray grid according to a fixed mask
or pattern, the geometry of the individual spots (square, circle, or rectangle), and
the radius of each spot. The “appropriate” radius for each spot is defined as
encompassing all of the spot area and enough of the surrounding background to
be able to detect the difference between spot and background. Both the grid and
individual spot size can be manually adjusted. For this study, we manually
adjusted the grid to center each spot within a circle of fixed radius, with the
radius being defined as the smallest circle required to isolate and detect the most
intense spot. Phoretix results are reported as the raw volume value, which is a
measure of [(spot intensity � background intensity) � total background].

Based on the APEX on/off determination for each probe in each array, the
frequency of positive probe hybridization (i.e., the number of “on” spots) was
determined for all 47 probes across all isolates (0, 1, 2, 3, or 4 for four replicate
arrays). The resulting frequency distributions of on/off determinations were then
analyzed to identify the subset of probes containing discriminating information.
For instance, a probe spot that was always “on” or “off” across all 64 arrays
contained no discriminating information relative to this set of bacterial isolates.
A probe spot whose on/off pattern is uniformly distributed across isolate types
(i.e., independent of the isolate type) also contains no discriminating informa-
tion. To identify the subset of discriminating probes, the observed distribution of
on/off values was compared, via a chi-squared test of independence (P � 0.5), to
the expected uniform distribution obtained by assuming that the bacterial isolate
type had no effect on a spot’s being on or off (a Fisher exact test could be used
instead of the chi-squared test). The on/off patterns of the rejected probes were
visually reviewed as a check of the test’s performance. Typically, rejected probes
were called “on” in one or two of the four replicates for numerous isolates. Thus,
the chi-squared test is a simple but effective measure for identifying noninfor-
mative probes and reducing the level of uncertainty associated with the estimated
bacterial fingerprints.

After the frequency histogram is reduced to a presumptive fingerprint estimate
of informative probes, a number of multivariate statistical analysis procedures
(28) could be used to evaluate the relationships between fingerprint profiles (e.g.
clustering, classification, discriminant analysis, and multivariate analysis of vari-
ance). For this study, we used principal-component analysis (PCA) to visualize
and project (but not statistically evaluate) the distance between fingerprint pro-
files (25). Results from the PCA were displayed graphically using an isolate-
specific microarray icon as the plotting symbol. The icon shows the fingerprint of
an isolate within the context of the microarray print pattern. Thus, the PCA plots
provide an estimate not only of distances between isolates but also of the specific
details of the fingerprints used to calculate the distances.

TABLE 2. Sequences for the random nonamer capture probes

Probe ID Sequence Tm (°C)a

01 5�-GATTGCGGT-NH2-3� 34
02 5�-GTCATGGTG-NH2-3� 34
03 5�-GTCGCCATA-NH2-3� 34
04 5�-TCATCGCGT-NH2-3� 34
05 5�-TTGGTGGCT-NH2-3� 34
06 5�-CGGTATAAC-NH2-3� 32
07 5�-GAACAACGT-NH2-3� 32
08 5�-CGTTGAAGT-NH2-3� 32
09 5�-GTCAACAAC-NH2-3� 32
10 5�-AAGGCAAAC-NH2-3� 32
11 5�-ATTTCGGCA-NH2-3� 32
12 5�-GCTGTTTAC-NH2-3� 32
13 5�-TGTTTGTCG-NH2-3� 32
14 5�-AATCAGCTG-NH2-3� 32
15 5�-AATTGCTGC-NH2-3� 32
16 5�-ATGGCAATC-NH2-3� 32
17 5�-CAACTACAC-NH2-3� 32
18 5�-CAGATGATG-NH2-3� 32
19 5�-CGATGATGA-NH2-3� 32
20 5�-CTAACGACT-NH2-3� 32
21 5�-CTACGCTTA-NH2-3� 32
22 5�-GGACTTTCT-NH2-3� 32
23 5�-TATAGCCGT-NH2-3� 32
24 5�-TGGCATCAA-NH2-3� 32
25 5�-CGCTTTGGT-NH2-3� 34
26 5�-CGTTTGCAG-NH2-3� 34
27 5�-GGACAAACG-NH2-3� 34
28 5�-AACGCCATC-NH2-3� 34
29 5�-AAGTCAGCG-NH2-3� 34
30 5�-ACATCGGCA-NH2-3� 34
31 5�-ACCGTCTTC-NH2-3� 34
32 5�-ACGAACTGG-NH2-3� 34
33 5�-ACGACCAGA-NH2-3� 34
34 5�-ACGCTGAAG-NH2-3� 34
35 5�-AGCAGTTCC-NH2-3� 34
36 5�-AGTGGCAAC-NH2-3� 34
37 5�-ATACCGGTG-NH2-3� 34
38 5�-ATCTTCCGG-NH2-3� 34
39 5�-ATTCCGGCA-NH2-3� 34
42 5�-CCTGCATTG-NH2-3� 34
43 5�-CGGCAATCT-NH2-3� 34
44 5�-CGGTTAACC-NH2-3� 34
45 5�-GATGCCGTT-NH2-3� 34
46 5�-GCAGGTGAA-NH2-3� 34
47 5�-GTCCTTGAC-NH2-3� 34
48 5�-TCAGTGGCA-NH2-3� 34
49 5�-TGGCATTGC-NH2-3� 34

a The approximate melting temperature was calculated using the nearest-
neighbor method.

VOL. 68, 2002 UNIVERSAL FINGERPRINTING MICROARRAY 6363



RESULTS

Optimized hybridization conditions. A thorough survey of
salt conditions (1� to 4� SSC and 150 mM trisodium citrate,
with 5� Denhardt’s solution), incubation temperature (4°C
and room temperature) and hybridization time (2 and 4 h and
overnight [ca. 17 h]) was required to achieve any degree of
hybridization to the fingerprinting array. In short, successful
hybridization to the fingerprinting arrays was achieved only
when labeled amplicons were hybridized at 4°C overnight. A
4°C hybridization temperature is counterintuitive to conditions
based on a traditional understanding of solution- or mem-
brane-phase hybridization kinetics (1). However, Drmanac et
al. (9) articulate the theory and demonstrate the requirement
for “cold” hybridizations when using hexa- or octamer probes.
In particular, their analysis showed that the discriminatory
ability of short-oligonucleotide hybridization either is temper-
ature independent or decreases with increasing temperature.
We think that the fingerprinting microarray described here is
very similar to the short-oligonucleotide hybridization experi-
ments described by Drmanac et al. and that “cold” hybridization

temperatures are the preferred baseline condition for optimizing
target hybridization to short-oligonucleotide microarrays.

APEX image analysis. Figure 1 illustrates some of the in-
herent variability associated with capturing large DNA targets
with nonamer probes immobilized on a two-dimensional sup-
port, in that both signal intensity and the visible hybridization
pattern varied between replicate arrays. Variations in signal
intensity and/or hybridization patterns result from all aspects
of the analytical process (see, e.g., reference 36) but were
captured, modeled, understood, and mitigated in this study
through experimental replication of the entire fingerprinting
method. However, microarray imaging itself is susceptible to a
number of errors, including flat-field effects, overshine, bleed-
ing, dark current, background noise, nonspecific hybridization,
and autofluorescence. Furthermore, imaging (optical) artifacts
can be easily confounded and exacerbated by the analysis soft-
ware, resulting in erroneous spot identification, erroneous
measures of spot intensities, and resulting errors in on/off dec-
larations for each probe in the array signatures; hence, inac-
curate fingerprint estimates are obtained.

FIG. 1. Variability in random nonamer microarray fingerprinting. Four replicate hybridizations are shown for each of three isolates. Each array
contains one biotinylated QC probe in the lower left corner of the print pattern.

FIG. 2. False-color image for one fingerprinting array (A) and probe spot intensities (B) measured by Phoretix (top value) or APEX (bottom
value). Regions 1 to 4 highlight different image analysis errors and erroneous intensity values deduced with the commercial software. Overshine
is visible as a green haze in panel A. The asterisks in panel B indicate erroneous Phoretix on/off determinations. NS, no identifiable “on” spot using
the APEX algorithm.
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Figure 2, a false-color image from one array and the atten-
dant measures of signal intensity, illustrates these points and
the rationale for developing the APEX algorithm for the DNA
fingerprinting application. Variations in local and regional
background intensity are obvious, some of which are due to
ELF precipitate and others are due to autofluorescence, noise,
or stray light. A flat-field effect can be seen in the bulk field,
moving from the bottom to the top of the image. Overshine is
visible in the bulk field between intensely hybridized probe
spots. Localized background is much more intense in the upper
right quadrant than in the lower left. These (and other) image
effects can significantly affect measured signal intensities, de-
pending on the algorithms and statistics used by the image
analysis software. For example, region 1 encompasses two
probe spots (spots 1 and 2) where there was no visible hybrid-
ization. The APEX algorithm (this study) correctly identified
these as nonhybridized spots (Fig. 2B). However, not only did
the commercial software indicate a positive hybridization in
these areas, but also the estimated signal intensity for these
two spots varied by an order of magnitude (172 and 1,999
relative light units). Region 2 shows two positive probes
(probes 42 and 47) with obvious differences in signal intensity.
In this case, the commercial software assigned a signal intensity
of 30,020 to the more intense spot but a signal intensity of
31,686 to the obviously weaker spot. In contrast, the APEX
algorithm assigned signal intensities of 3,483 and 2,753, respec-
tively, values that are at least consistent with expectations
based on the raw image (Fig. 2A). A similar situation is shown
in regions 3 and 4 of Fig. 2.

Image analysis with the APEX algorithms therefore showed
that if we used the commercial software to analyze and quan-
tify microarray signal intensities, we would erroneously declare
six probes to be on and contributing to the overall fingerprint
estimate when they were in fact off (probes 1, 2, 4, 19, 36, and
49). Consequently, we used the more conservative APEX al-
gorithms to estimate spot intensities and determine whether
nonamer probes were on or off and contributing to the mi-
croarray signature for each microorganism. Despite the dem-
onstrated ability to more accurately define spot intensities with
the APEX algorithm, only the binary on/off determinations
(i.e., frequency histograms) were used in the chi-squared test
for deducing microbial fingerprints.

Defining the microarray fingerprint. From replicate ampli-
fication reactions and replicate arrays, we generated a probe
frequency histogram for each isolate; a subset of these are
shown in Fig. 3A. The frequency histogram is a quantitative,
multivariate vector indexed by probe ID and is analogous to a
traditional gel fingerprint where the profile is indexed by DNA
size. As multivariate vectors, the frequency histograms could
be analyzed, clustered, and compared with each other by using
any number of multivariate statistical approaches. In contrast
to a gel image, however, the frequency histogram is a quanti-
tative summary that captures experimental replication and the
true variability. Hence, the microarray frequency histogram is
a more realistic fingerprint estimate than a gel image or single
microarray image. To extract a robust fingerprint from the
replicates, we performed the chi-squared independence test to
identify nonamer probes with discriminatory value, given the
set of isolates under consideration in the study. In this study, 10
of the 47 nonamer probes had diagnostic value for the 16

organisms and are displayed in Fig. 3B as microarray icons. In
practice, adding new isolates to the study for the purpose of
creating a library of fingerprints may result in a different subset
of informative probes and different fingerprints. Thus, the in-
formative probes (resulting from the chi-squared test) and
deduced fingerprints depend on the context of the experiment
and the extent of the library to which a fingerprint is being
compared.

Discriminating between isolates. In contrast to the fre-
quency histograms in Fig. 3, the set of informative spots iden-
tified by the chi-squared test constitute a statistically robust
“bar code” and 10-dimensional signature vector for each iso-
late that can be confidently analyzed by multivariate statistics.
We used PCA to project and visualize the differences between
microarray fingerprints (i.e., microorganisms); the results are
illustrated in Fig. 4. The first three principal components ac-
counted for 70% of the variability in the data set, and the first
seven principal components accounted for 95% of the variabil-
ity. The first three principal components were plotted against
each other to visualize the separation between isolate signa-
tures. The separation between signatures in PCA plots is in-
dicative of the discrimination between the 14 test organisms
but is not a statistical test of the genetic distance between
organisms. Using PCA to visualize the microarray fingerprints,
however, we could clearly separate X. oryzae strains 43836 and
49072 that could not be separated by traditional gel electro-
phoresis of REP-PCR amplification products (Fig. 5).

DISCUSSION

Xanthomonas pathovars. Members of the bacterial genus
Xanthomonas cause disease in many important crops and are a
potential threat agent for agricultural terrorism. For these
reasons, the U.S. Department of Agriculture Animal and Plant
Health Inspection Service and the European Plant Protection
Organization regulate the national and international shipment
of seed, fruit, and plants. The legal statutes governing the
treatment of pathogen outbreaks can be extreme. For example,
Asiatic bacterial canker of citrus (X. axonopodis pv. citri A)
recently reemerged in Florida and had a significant impact on
the citrus industry. Regulatory statutes, in this case, mandated
that infected fields (and nearby trees) be cleared and burned to
eradicate the disease (15) and prevent the continued spread of
Xanthomonas (canker). The need for forensic Xanthomonas
identification and tracking programs was also evident in a 1984
disease outbreak in Florida. In this episode, a number of law-
suits were filed as a result of a “canker” outbreak in nursery
stock of Single citrumelo (Citrus paradisi � C. trifoliata). This
outbreak, while not affecting mature fruit-bearing trees, none-
theless resulted in the imposition of quarantine on all Florida
citrus and the destruction, by burning, of acres of nursery
stock. Gabriel et al. (12) proposed the name Xanthomonas
campestris pv. citrumelo for the pathogen causing one form of
the nursery leaf-spotting disease. The current proposed desig-
nation for this particular pathogen is X. axonopodis pv. cit-
rumelo, the causative agent of citrus bacterial spot (41). Under
existing regulatory statutes, citrus bacterial spot is of little
economic importance and falls outside of the statutory require-
ments for eradication, yet the economic damage was already
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inflicted on the industry, with the current Asiatic canker out-
break costing the industry millions of dollars (15).

Limitations of gel-based fingerprinting methods. The need
to accurately identify closely related microorganisms is there-

fore obvious; it includes many applications in source attribu-
tion, epidemiology, and public health. State-of-the science
microbial DNA fingerprinting relies primarily on repetitive-
element PCR techniques, methods that are used extensively to

FIG. 3. Relative-frequency histogram for selected Xanthomonas isolates (A) and the corresponding microarray icon with informative probes
given the set of isolates used in this study (B).
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FIG. 4. PCA of microarray fingerprint profiles. (Top) principal component 1 versus principal component 2; (bottom) principal component 1
versus principal component 3.
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identify, geolocate, and track the dissemination of xan-
thomonads (and other microorganisms) in the environment
(11, 13, 23, 24, 27, 32, 33). The PCR and repetitive DNA
primers (e.g., REP, ERIC, and BOX) are used to sample a
microbial genome, with the resulting PCR amplicons being
separated and indexed based on size. However, fragment-siz-
ing techniques are not unambiguous, as illustrated in several
samples in Fig. 3B and in even a cursory review of published
gel fingerprinting images (see, e.g., reference 6). For example,
objective identification or definition of a “band” continues to
be problematic, especially with smeared backgrounds (Fig. 5,
lane 2) or low- and high-intensity bands (Fig. 5, lane 5). Cri-
teria for including or excluding data (bands) above or below a
given size are arbitrary, and a single gel cannot simultaneously
resolve low- and high-molecular-weight bands. There is also no
guarantee of genetic identity between two bands of the same
size unless they are verified by Southern blot analysis. Gels
are also susceptible to warps, bubbles, distortions, and other
anomalies (lane 13) that cannot be objectively corrected within
or between gels, even with internal standards and advanced
software (39). For these reasons, gel electrophoresis (fragment
sizing) frequently cannot resolve near neighbors, as illustrated
for X. oryzae strains 43836 and 49072, and is not conducive to
automated, objective scoring across gels. The inability to ob-
jectively score gel fingerprints and/or resolve near neighbors
therefore led us to explore microarrays as an alternative de-
tection technology for microbial fingerprinting.

Microarrays as an alternative detection technology. The
random-fingerprinting microarray described here is predicated
on the nucleic acid scanning-by-hybridization technique of
Salazar and Caetoano-Anollés (34) for separating clonal iso-
lates of E. coli O157:H7. A similar membrane-based hybrid-

ization approach was used to detect rifampin-resistant strains
of tuberculous mycobacteria in lieu of culture-based tests (14),
and Beattie (3) showed how the random fingerprinting concept
could be configured in microarray format. The power of mi-
croarrays for fingerprinting microorganisms is embodied in
several subtle but important ways. First, oligonucleotide
probes are physically immobilized in space and therefore re-
move the positional variation inherent in detecting and defin-
ing shared bands or comparing gel fingerprints across multiple
gels or experiments (Fig. 3B) (39). Second, even though we
used a simple 47-probe microarray for this study, many thou-
sands of capture probes can be immobilized on a microarray.
Thus, microarrays provide a multiplicative increase in resolv-
ing power over agarose or polyacrylamide gels, which are typ-
ically limited to �50 identifiable bands in any one lane. Third,
microarray capture probes interrogate target DNA based on
the DNA sequence, ensuring that common elements in two
microarray fingerprints are genetically informative and identi-
cal. Therefore, the microarray profile embodies the added ge-
netic information of a Southern blot without any additional
effort. Finally, microarray technology is more conducive to
automation, replication, and standardization than are sieving
media (gels).

Because nonamer probes occur once every 131 kbp (on
average) in double-stranded DNA, a priori knowledge of tar-
get DNA sequences is not required and the same chip can be
used to generate fingerprints from any microorganism. Indeed,
we have obtained similar results using the same chip in pre-
liminary tests of E. coli O157:H7 isolates amplified with REP
and ERIC primers (data not shown). The universal nature of a
random fingerprinting microarray is a compelling feature for
method standardization, but it is also a potential weakness.

FIG. 5. Fingerprinting Xanthomonas isolates by REP-PCR and agarose gel electrophoresis. Lanes: M1, � � HindIII (Life Technologies,
Gaithersburg, Md.); M2 � kilobase DNA ladder (Stratagene, La Jolla, Calif.); 1, E. coli strain B; 2, P. putida 39169; 3, X. campestris pv. campestris
33913; 4, X. campestris pv. campestris X3; 5, X. campestris pv. campestris KX-1; 6, X. axonopodis pv. citrumelo 3048; 7, X. axonopodis pv.
malvacearum N; 8, X. axonopodis pv. axonopodis 19132; 9, X. axonopodis pv. citri 62; 10, X. axonopodis pv. citri 3213; 11, X. axonopodis pv. citri
100; 12, X. axonopodis pv. citri 166; 13, X. axonopodis pv. citri 169; 14, X. oryzae pv. oryzae 43836; 15, X. oryzae pv. oryzae 43837; 16, X. oryzae pv.
oryzicola 49072; 17, no-template control.
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That is, nonamer probes may be complementary to repetitive
DNA PCR primers that are used (or required) to sample
genomes of interest. The REP 1R primer used in this study, for
example, is so degenerate at the 5� end (5�-IIINGCNGC) that
it is partially homologous to several of the capture probes
(although perfectly matched with none). Fortunately, positive
hybridization signals that result from DNA sequence con-
tained within the repetitive DNA PCR primer are shared by all
profiles under consideration. Thus, primer homology to the
capture probes results, at worst, in an uninformative signal
(probe spot) that is discarded from the individual fingerprint
by using the statistical methods developed here; at best, it
serves as an internal positive control for successful hybridiza-
tion and signal development. As described, then, the microar-
ray method is conceptually similar to standard gel fingerprint-
ing techniques without the drawbacks of gels: probes spots are
akin to bands on a gel, hybridization intensity is similar to band
intensity (e.g., accumulation of detectable amplicon), and the
binary microarray profile is equivalent to the binary profile of
gel bands. However, while the linkage between microarray and
gel fingerprinting is obvious and a natural extension of prior
work (3), the statistical foundation for image analysis, quanti-
tatively defining a microarray DNA fingerprint, and statistically
comparing fingerprint profiles is not.

Image analysis, statistics, and microarray fingerprints.
There are numerous software products for image analysis,
many of which are being applied to the analysis of microarray
images. A majority of available microarray software, however,
is designed for two-color expression profiling studies, such that
the underlying assumptions, statistical models, and computa-
tional algorithms are not designed to address alternate biolog-
ical questions or microarray formats, such as the work de-
scribed here. For single-color fingerprinting applications, the
principal information used to construct a fingerprint is whether
specific probes are on or off. Because the true hybridization
intensity for any given probe is always unknown, any signal
above background is, in principle, a significant data point con-
tributing to the overall estimate of a microbial fingerprint.
Therefore, the microarray software must be able to accurately
discriminate between true signal and background and must be
capable of modeling the major sources of microarray variabil-
ity (described in references 17 and 36).

Because the background signal varies in time and space and
every signal is potentially informative, we do not think that it is
sufficient to normalize against simple measures of “global”
background intensity, a fixed window or spot size, or the in-
tensity of unhybridized (negative control) spots. Thus, results
presented in Fig. 2 illustrate the interdependence of statistics
with biology when using microarrays and the need to under-
stand the image analysis challenge and software. The Phoretix
software package used for this study was version 1.0 and prob-
ably originated from a dot blot densitometry algorithm,
wherein the hybridized (macro)spots are all of uniform size
and shape. The latest version of Phoretix software (v3.1), for
example, contains more sophisticated spot-finding tools and
probably produces a more accurate measure of raw volume
data. Many new commercial software packages also contain
similar (and more advanced) features and algorithms, so that
the results here are not an indictment of commercial products
(in general) or Phoretix software (in particular). The simple

result shown in Fig. 2, however, illustrates why we developed
the APEX algorithm for image analysis rather than relying
exclusively on closed-source software or inaccessible (i.e., com-
mercially developed and proprietary) algorithms to find and
extract our microarray images. Equally important to the fin-
gerprinting method described here, however, is the statistical
framework (chi-squared test, linear model, and experimental
replication) that allowed us to establish a fingerprint estimate
that can be quantitatively compared across slides, days, etc., by
using well-established multivariate statistics. The inability to
quantitatively compare fingerprints continues to be a signifi-
cant (forensic) limitation to many gel-based microbial finger-
printing methods, a limitation that has been overcome in the
microarray approach described here.

Summary. The proof-of-application study described here
represents an important first step to high-resolution bacterial
DNA fingerprinting with microarrays, even though we demon-
strated the efficacy of the method with a very simple, 47-probe
chip. Increasing the number of capture probes will provide an
additive increase in useful (discriminatory) data. Amplifying
genomic DNA with additional repetitive or arbitrary PCR
primers will provide a multiplicative increase in the number of
effective fingerprint probes for each isolate without adding any
more capture probes to the array. Finally, performing quanti-
tative comparisons between microarray fingerprints will
require additional statistical and computational effort and de-
velopment. Regardless, the power of the microarray finger-
printing technique described here ultimately lies in under-
standing, modeling, and capturing the variability in the entire
experimental process. Forensic applications of microarray fin-
gerprinting will therefore require a more precise definition for
experimental replication to ensure that the fingerprint is rep-
resentative of microbial sample profiles collected on different
days with slides printed from different batches, etc. Without
the proper replication, observed differences between true “un-
knowns” and a fingerprint library will be confounded with
sources of variability inherent to the experimental process and
a reliable identification of microbial presence in the sample
will not be possible. Application of the fingerprinting array to
microbial forensics will also require a more thorough under-
standing of natural (microbial) variability in microarray finger-
prints, improved analytical methods to improve sample quality
and signal-to-noise ratios, and enhanced open-source image
analysis software for unambiguous feature extraction and gen-
eration of microarray fingerprints that can be broadly dissem-
inated to the user community.
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